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Renormalisation group for percolation using correlation 
parameters 
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$ Center for Polymer Studies$ and Physics Department, Boston University, Boston, MA 
02215 USA 

Received 16 March 1983 

Abstract. We have applied position-space RG methods to the problem of percolation of 
correlated sites on the square and simple cubic lattices. Our approach uses a cell-to-site 
transformation and superposition approximation to renormalise the site probabilities and 
a set of correlation parameters. In two dimensions we find two non-trivial fixed points, 
for random percolation and king-correlated percolation respectively. In three dimensions 
only a single non-trivial physically accessible fixed point is found, controlling the percola- 
tion of random sites. In contrast to the two-dimensional case a fixed point for positive 
values of correlation is found to have complex eigenvalues, and does not correspond to 
a physical percolation point. The finding of a single universality class for correlated 
percolation in three dimensions is in agreement with the known behaviour of Ising- 
correlated percolation. 

1. Introduction 

As its name suggests, correlated percolation (CP) is a variant of the standard percolation 
problem, in that the lattice elements-sites or bonds-are correlated as opposed to 
independent random variables. In an earlier letter (Tuthill and Klein 1982) we 
described a method for studying two-dimensional site CP in which the parameters in 
position-space renormalisation group (PSRG) are the site-site correlations themselves. 
In this paper we discuss that approach in more detail, and describe the results of 
calculations on a three-dimensional (simple cubic) lattice. 

Motivation for our PSRG approach is found first in the nearest-neighbour Ising 
ferromagnet if (say) ‘down’ spins are regarded as occupied sites and the remainder 
as empty. It is well known from the work of Coniglio et a1 (1977) that the Ising 
critical point T = T,, H = 0 (T  = temperature, H = magnetic field) on planar lattices 
is a percolation threshold; a line H,(T) of percolation points extends from the critical 
point to infinite temperature, as shown in figure l(a).  In three dimensions, on the 
other hand, Monte Carlo results (Muller-Krumbhaar 1974) indicate that H,( T )  does 
not terminate at the Ising critical point, but instead (cf figure l (b ) )  reaches H = 0 at 
a temperature below T,-the so-called Muller-Krumbhaar (MK) po in t -on  the first- 
order phase transition line. Recently (Klein et a1 1978, Coniglio and Klein 1980) 
PSRG techniques have been applied to this subject, exploiting a connection between 
percolation and the q-state Potts model in the 4 + 1 limit (Kasteleyn and Fortuin 
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Figure 1. Correlated percolation of aligned spins in the king ferromagnet with nearest- 
neighbaur interactions ( J  = interaction strength) in the plane of exp( -J/ /cT)  against 
magnetic field H. Shown are the lines of percolation points for two-dimensional (dotted) 
and three-dimensional (broken) systems; percolation of ‘down’ spins takes place for 
temperatures and fields below these lines. In the two-dimensional case the line of 
percolation points ends at the Ising critical point H = 0, T = T,. 

T :  T, I - 

1969). This ‘Potts lattice gas’ approach gives satisfactory results in two dimensions, 
showing that in fact the Ising critical point is a higher-order critical point for percola- 
tion. The same method when applied in three dimensions, however, gives a duplicate 
of the 2~ results and is clearly incorrect. 

The Potts lattice gas approach fails in three dimensions first for technical reasons, 
since it gives recursion relations for temperature and field which are identical to those 
of the Ising model, and free of the Potts coupling constant. Thus only the critical 
point-and not the MK point-an be singled out on the H = 0 axis. There exists a 
more fundamental difficulty, however, for any renormalisation procedure using the 
variables H and T. This is due to the fact that the MK point is a critical end-point 
for percolation, appearing when H changes sign and a new thermodynamically stable 
phase intrudes. In the RG such an end-point should generally be signalled by a 
separatrix (or critical surface) leaving the physically accessible region of parameter 
space. A flow diagram in the H,T plane with this geometry is not possible, since 
every point at finite H and T corresponds to a single physically accessible equilibrium 
state. 

We circumvent this problem as follows. We replace H as an RG parameter by 
the more customary (for percolation problems) quantity p ,  the probability that a site 
is occupied. This likelihood is simply related to the reduced magnetisation M, the 
conjugate of H, by p = ( M +  1)/2. The temperature, or nearest-neighbour coupling, 
is then replaced by a nearest-neighbour correlation parameter t, defined through the 
relation 

t -(sfij>1/[4~(1-~)1, (1) 

where si and si are nearest-neighbour spins. Thus t = 1 corresponds to the case of no 
correlation (T + 00, or pure random percolation) while 0 < t < 1 for finite temperatures. 
Introduction of p ,  t parameters means chat RG flows are not necessarily restricted to 
thermodynamically stable regions of the phase diagram; that is, the metastable region 
is not a priori excluded. We anticipate that the percolation line (if it can be located) 
will not be forced to end at the higher-order critical point, but may extend into this 
metastable area. We do not expect a two-parameter percolation RG to locate so subtle 
a feature as a first-order thermal transition when, as in this case, it is not made obvious 
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by symmetry considerations. The behaviour of the RG in the metastable region, and 
the character of the percolation line in the three dimensions, are topics of central 
interest in this work. 

A second reason for introducing an RG scheme parametrised by densities, not 
fields, is the existence of CP problems which are difficult, if not impossible, to describe 
using a Hamiltonian or global statistical weight. Such problems are best introduced 
by an example. In a model proposed by Edwards and Anderson (1975) for an Ising 
spin glass in two dimensions, one considers a square lattice populated by Ising spins 
which are connected by nearest-neighbour bonds of uniform size but random sign. If 
the fraction P b  of ferromagnetic bonds is reduced from unity, the T = 0 magnetisation 
decreases continuously, reaching zero at a value of P b  near 0.9. It has been conjectured 
(Domany 1979) that this value corresponds to the percolation threshold for ‘unfrus- 
trated plaquettes’-elementary squares of bonds with an even number of antiferromag- 
netic segments. Regarding such plaquettes as occupied sites on the dual lattice, it is 
clear that one is dealing with site CP in which correlations are induced by the bond 
geometry. It is plausible that one could map such a problem onto an Ising model 
(plaquette -+ site -+ spin). Unfortunately, to choose properly the multi-spin interactions 
that would reproduce the existing site correlations is not straightforward. A method 
which focuses directly on those local configurations seems preferable. The application 
of our PSRG methods to this specific problem has been discussed in earlier work 
(Tuthill 1982). 

This paper is organised as follows. In the next section we sketch the cell-to-site 
PSRG which is to be used. In the absence of a Hamiltonian we need to find a statistical 
weight for each configuration. This is constructed from correlation parameters through 
a modified superposition approximation. The expected role of scaling powers in this 
scheme is also discussed. 

Two-dimensional results are reviewed in 9: 3. We employ two levels of approxima- 
tion, the first based on the possible configurations of two adjacent sites, and the second 
treating correlations within a four-site cluster. Both approaches suggest that there 
exist only two universality classes for site CP. A fixed point with random percolation 
exponents controls problems with weak correlation, while for more strongly correlated 
sites-e.g., down-spins at the king critical point-a higher-order percolation point 
may appear. 

In $4 the two-site approach is applied to the simple cubic lattice. The strong- 
correlation fixed point of two dimensions is retained, but the eigenvalues at this point 
are complex. We argue that the unphysical nature of this scale-invariant point (much 
the same as the extension of a separatrix into an inaccessible regime) indicates that 
the equilibrium branch of the percolation curve penetrates into the metastable region. 
We close in 9: 4 with a discussion of this PSRG and the metastability problem. 

2. The cell-to-site PSRG 

PSRG methods for random site percolation have been extensively described by other 
authors (Reynolds e: a1 1977, 1978). In brief, a multi-site cell of the original lattice 
is replaced by an empty or occupied site of the new (rescaled) lattice according to a 
rule chosen with a view to the physics. i.e., if a cell is connected from side to side by 
a path over nearest-neighbour occupied sites, then the renormalised site is considered 
to be occupied. The specifics of various connectivity rules have been discussed by 
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Reynolds et al. The likelihood that a renormalised site is occupied is the net probability 
of all internal configurations of empty and occupied sites for which the cell is connected. 

Rescaling in site CP is performed in a similar way, with the exceptions that (i) a 
multi-cell cluster must be considered, since multi-site correlations are rescaled, and 
(ii) the probability for each internal configuration must be chosen with the correlations 
in mind. The first change means simply that extending this approach to large cells, 
or treating correlations involving very many spins, would soon make the calculation 
intractable. Point (ii) involves a different limitation, since in fact one must approximate 
the likelihood of a configuration from correlations involving fewer sites. The procedure 
for ‘building up’ the weight from short-range correlations will be described below. 

A natural first approach to treating correlations is to introduce independent 
probabilities ui for the various configurations of two nearest-neighbour sites: 

U1 = (m), U 2  = (xo) = (KO), U 3  = ( x x )  (2) 

where o denotes an empty and x an occupied site. Since u 1  + 2u2 + u3 = 1, in fact 
only two parameters are needed in the PSRG at this level. It is convenient to choose 
them as described in the previous section, namely p and t :  

Clearly O <  t < l/max(p, 1 - p )  if the U ’ S  are positive. A tendency for occupied (or 
empty) sites to cluster together is reflected by a value of f less than one. We also 
note that t is not defined in the p + 1 or p + O  limits, although the basic quantities 
{ui} keep their meaning. 

To generate rescaling transformations we use a cluster of two neighbouring cells, 
with each cell 2 x 2  on the square lattice or 2 ~ 2 x 2  on the simple cubic. The 
renormalised site occupancy is defined by 

(4) 

where Z‘ is a sum over only those configurations in which the (say) right cell is rescaled 
to an occupied site, via whatever connectivity rule is in use. The recursion relation 
for t is then 

( 5 )  

where now 2’’ is over all configurations rescaling to ‘ x o ’ .  
There is of course substantial freedom in the choice of a method for weighting 

cluster configurations. We describe next an approach which is a compromise between 
simplicity and physical plausibility. Each occupied or empty lattice site acquires a 
factor p or 1 - p ,  while for each nearest-neighbour pair in the cluster one includes a 
term u ~ / ( l  - p ) * ,  u2/[p(l - p ) ]  or u 3 / p 2  as appropriate. The expression that results 
at this stage, however, gives a poor estimate for the likelihood of a closed loop of 
occupied or empty sites. In particular, a plaquette of four occupied sites would have 
a weight of (1 - t + = [&3/(u2 + u3)I4, which is a constant in the u2 + 0 (or t + 0) 
limit, independent of u 3 .  This limit should simply correspond to a situation in which 
large regions of occupied sites coexist with large regions of empty sites, in such a way 
that the intervening boundaries contain a vanishingly small fraction of the total system. 
In this light, a more reasonable weight for the fully occupied cluster as u2 goes to 
zero would simply be p ,  the likelihood of finding a single site occupied. This can be 
arranged by including a term p 2 / u 3  (or (1 -p)2/u1) for each plaquette consisting solely 

p ’  = Z’ (configuration weights) 

t’ = [p’(l  - p ‘ ) ] - ’  E’‘ (configuration weights) 
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of occupied (or empty) sites. In three dimensions an additional factor of u3/p2 or 
u l / ( l  -p) ’  is needed for each fully occupied or empty cube. 

The relative probability, approximated in this way, is illustrated in figure 2 using 
sample configurations of clusters on both the square and simple cubic lattices. 

? X- 

1 

I I 
x-x 

Figure 2. Typical two-cell clusters on the square and simple cubic lattices, both mapping 
to the renormalised site configuration ‘x0’. The relative statistical weight of (a) is 
(u1u3)2u26p-6(1 - P ) - ~ ,  and that of ( 6 )  is ulsuz17u33p-’6(1 - P ) - ’ ~ .  

The weights formed as described above satisfy the following criteria. (a) They 
correctly reduce to the product of independent site probabilities in the limit that t = 1 
(limit of pure random percolation). (b) They are non-singular in the p = 0 or p = 1 
limits when t < 1; only the configuration with all sites empty or occupied, respectively, 
has non-vanishing probability. (c) As remarked above, in the t = 0 limit the likelihood 
of finding a cluster with all sites occupied is simply p ,  and that for all sites empty, 
1 - p .  Partially occupied configurations have vanishing probability as t = 0. 

The p and t recursion relations therefore consist of sums of terms, each of which 
is a product of powers of the ui, p ,  1 - p  and t. Enumeration of all the terms could 
be done by hand for the eight sites of the two-dimensional problem, but for the simple 
cubic lattice (16-site cluster) a computer was of course necessary. Fixed points of the 
recursion relations were found numerically by Newton’s method. 

A second approach, which was applied only in two dimensions, has as its starting 
point the correlations within a four-site plaquette. Independent probabilities w l -wg 

are defined for the distinct configurations (reduced by reflections and rotations) of a 
square of four lattice sites: 

With the normalisation condition 

w 1 + 4 w 2 + 4 w 3 + 2 W 4 + 4 w 5 + W ~ =  1 (7) 
five parameters are involved in the renormalisation. The two-site probabilities ui  are 
of course expressible in terms of the w i :  

U 1  = w 1 + 2 w z +  w3, (8) U 2  = w2+ w3+ W 4 +  wg, U 3  = w 3 + 2 w 5  + w g .  
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For rescaling by a factor of two, we use a square cluster of sixteen sites (four cells) 
and again weight individual configurations by a superposition approximation. Each 
plaquette (excepting the centre) is given a weight wi, while each bond shared by these 
cells acquires a factor l / u j .  The recursion relations are stored and studied numerically 
in the same manner as in the two-site three-dimensional case. 

3. Two-dimensional results 

We next review the square lattice results, which are qualitatively similar in both the 
two- and four-site approximations. The PSRG trajectories have only two ordinary 
fixed points, excluding those trivial ones corresponding to the fully occupied or 
completely empty lattice. The first is situated at zero correlation, has a single relevant 
eigenvalue, and dominates the percolation properties of weakly correlated sites. We 
refer to it as the random percolation fixed point R, and note that it was first found 
by Reynolds et al. A second fixed point, denoted I aild unstable with respect to the 
first, is located at strong positive correlation and is characterised by two relevant 
eigenvalues. 

In table 1 are listed sample locations of R and I, together with their relevant 
eigenvalues A i  and scaling powers yi, where y = In h/ln 2. For the specific cases shown 
we have used an R I -  type connectivity rule, in which cells must be spanned in a chosen 
direction. (In the two-site approximation, this is parallel to the long axis of the cluster; 
in the four-site case, to preserve reflection symmetry, cells of type w 3  are considered 
spanned if the occupied sites are shared with a neighbouring cell.) We point out that 
the basic geometry of the phase diagram is relatively insensitive to the particular 
connectivity rule used, although precise details do vary slightly. The R I  rule is a 
convenient choice since it closely reproduces the random-site percolation threshold 
p = 0.593 for the square lattice, known from numerical studies. 

We show in figure 3 the flow diagram derived for the two-site case of table 1. 
Rather than plotting p against t, which introduces (arbitrarily located) fixed points 

Table 1. Fixed-point parameters for two- and three-dimensional correlated percolation. 

Fixed point R 

2-site, 2D uI-u3 0.146,0.236,0.382 0.417,0.073,0.438 
p ,  t 0.618,l.O 0.511,0.291 

A i , A 2  1.528, - 1.974, 1.546 
YI, ~2 0.612,- 0.629,0.981 

4-site, 2D W 1 - w g  0.0213,0.0344,0.0557, 0.143,0.0346,0.0385, 
0.0557,0.0902,0.146 0.00908,0.0515,0.341 

p ,  t 0.618, 1.0 0.616,0.565 
A I ,  A2 1.528, - 1.400, 1.082 
YI, YZ 0.612,- 0.485,0.114 

2-site, 3D u1-u3 0.473,0.215,0.097 0.436;0.112,0.340 
p ,  r 0.312,l.O 0.452,0.451 

A i ,  A 2  2.051, - 2.850 + i0.725 
YI. y 2  0.965, - - 
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Figure 3. Renormalisation flow diagram for the 
square lattice correlated percolation problem using 
the two-site approximation. R is the random perco- 
lation fixed point, and is stable against weak positive 
or negative correlation between adjacent sites. I is 
a doubly unstable strong-correlation fixed point, 
characteristic of king-correlated percolation. 
Shown dotted is the curve u l ( u z )  for unfrustrated 
plaquettes. 

Figrue 4. Renormalisation flows for the three- 
dimensional (simple cubic lattice) correlated perco- 
lation problem. The random percolation fixed point 
R controls all percolation transitions, since the fixed 
point I has complex eigenvalues and is physically 
inaccessible. 

on the p = 1 and p = 0 lines, we use a composition triangle with vertices u l ,  u3 and 
2u2. In this representation the line of no correlation (t = 1) appears as the curve 
u 1  = ( u l  +u2) * ,  which is also the separatrix linking R with the u1 and u3 vertices. The 
curve u1(u2)  for unfrustrated plaquettes in the *J Ising model is seen to cross the 
critical separatrix leading to R, indicating that their percolation properties are in the 
same universality class as uncorrelated sites. 

The strong-correlation fixed point I is a higher-order percolation point, and we 
identify it with the thermal critical point of the two-dimensional Ising ferromagnet. 
The location of I for the two-site approximation in fact agrees quite closely with the 
exact critical values p, and t ,  for a magnetic system: 

p, = 0.5, t, = 1 - 2-’/2 = 0.2929. . . . (91, (10) 

The latter expression arises from equation (3) and the exact result (Kaufman 1949, 
Kaufman and Onsager 1949, Montroll er a1 1963) that the nearest-neighbour correla- 
tion function (sisi) takes the value 2-’” at criticality. This correspondence is sensitive 
to the particular choice of the superposition approximation, but less so to the type of 
connectivity rule. A striking feature of the phase diagram shown is the existence of 
a fixed line at u2 = 0, or maximum positive correlation. This is a consequence of our 
choice of the configuration weights to meet criterion (c) above. It gives rise to a ‘mixed 
phase’ regime below the u l-I-u3 separatrix, where PSRG trajectories flow toward the 
base of the composition triangle. 

The results of the four-site approximation (table 1) are less easily displayed, since 
the trajectories lie in a space of five RG parameters. The fixed point I remains a 
higher-order percolation point with two relevant eigenvalues and a separatrix leading 
to R. As it is the attractor in a three-dimensional critical subspace, I is not expected 
to have values of p and t corresponding to those of the Ising model at criticality. 
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In both approximations the single relevant eigenvalue at R gives a connectedness 
length exponent for percolation vp of 1.635 (cf Reynolds et a1 1980). The scaling 
powers at I, on the other hand, should be compared with those of the king model. 
In the two-site approximation the scaling fields are essentially p - p *  and r - t* (with 
eigenvalues A and A 2 ,  respectively). We expect the first to scale like the magnetisation, 
while the latter is proportional to the nearest-neighbour correlation function, or 
internal energy: 

t - t * - ( T  - Tc)'-", p - p * - ( T - T , ) .  

Thermal (M, T )  and percolation ( p ,  I )  exponents are then expected to obey the 
relations 

Y p  = YM, YI = d - Y T .  (13), (14) 

The exact two-dimensional values for y M  and y T  are 0.125 and 1.0, respectively. Thus 
our results in the two-site approximation are quite good for yt, but poor in the case 

For the four-site approximation, we point out that a four-spin Ising correlation 
function should scale like (T  - TJ" near criticality; since a = 0 in two dimensions, 
the appearance of a scaling power near zero (rather than near unity) is consistent with 
the picture established so far. 

of Y P .  

4. The two-site approach for the simple cubic lattice 

In three dimensions (simple cubic lattice) the two-site approach produces a flow 
diagram roughly similar to the 2~ case. Figure 4 shows the situation under a connectivity 
rule in which a cubic cell is occupied if there exist spanning paths between opposite 
faces in at least two directions. In table 1 are listed the fixed point parameters, relevant 
eigenvalues, and scaling powers. The random percolation fixed point R (on the t = 1 
curve) occurs at p *  = 0.312, as compared with the 'exact' (from numerical simulations) 
value p = 0.31 1. The percolation exponent vp arising from the single relevant eigen- 
value at R is given in this scheme as 0.965, while estimates (cf the review of Essam 
1980) from other methods lie in the range 0.8-0.9. 

A mixed-phase region for small values of u2 is again apparent, as is a strong 
correlation fixed point (I) unstable in all directions. However, the eigenvalues of the 
linearised recursion relations at I are complex, so that we cannot regard it as a 
physically accessible scale-invariant point. Indeed, for systems initially close to I, the 
large-scale connectedness would be an oscillating function of the site concentration, 
since the separatrices spiral outward from I. 

In this approach, which makes use of uncontrolled approximations, we cannot 
completely rule out the possibility that such behaviour is simply an artifact of the 
method, and unrelated to the physics. One can, however, vary the steps in the method 
that are largely arbitrary, and note their influence on the results. With this in mind 
we adopted several alternative versions of the connectivity rule, e.g., spanning paths to 
include one specified direction, or spanning in at least two directions, one of which 
is specified. Complex eigenvalues at the fixed point I are a persistent feature of all 
the rules tested. It is reassuring to find further that such behaviour is not present 
under the majority rule. This preserves the symmetry between empty and occupied 
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sites, and therefore would be expected to locate the thermal critical point-not a 
percolation threshold. 

Complex relevant eigenvalues are not unknown in RG studies of phase transitions 
(Boyanovsky and Cardy 1982, Weinrib and Halperin 1983). By relevant we mean, 
as in Weinrib and Halperin, that the real part is greater than one and the trajectories 
spiral outward from the fixed point. The meaning of these eigenvalues is by no means 
clear, but certain tentative conclusions are possible. 

Since our recursion relations and fixed points are real, complex eigenvalues imply 
complex scaling fields. An additional characteristic of the recursion relations is that 
the RG flows from the unstable fixed point I define a separatrix which ends at p = 0 
or 1 and t finite-a fixed-point location which is quite arbitrary and depends heavily 
on the exact definition of the RG transformation. This is similar to the behaviour of 
RG flows which have been speculated to indicate a smeared transition, in the work of 
Weinrib and Halperin. 

We conclude tentatively that the choice of p and t as renormalisation variables, 
and the addition of the superposition approximation, has allowed this RG method to 
penetrate into the metastable state. Near the coexistence curve (for shallow quenches) 
the critical droplet needed to nucleate the metastable phase is large (Langer 1967) 
and small cluster methods such as those employed in this work cannot ‘see’ the critical 
droplet. As the system is quenched deeper the critical droplet size decreases until it 
can be detected by a small cluster approximation. This gives rise to a separatrix, on 
one side of which the system appears stable (in this RG approximation) and on the 
other side unstable. 

Whether a configuration of spins contains a critical droplet of finite size will depend 
quite heavily on the exact way in which configurations are weighted, i.e., on how one 
handles the ground state. As noted above, this is not a well defined procedure in our 
method. Hence the separatrix defined by the unstable fixed point with relevant 
complex eigenvalues should not be considered as defining a sharp transition line, but 
instead a smeared region in which the system crosses over from metastable to unstable 
in a given formulation of the RG. This resembles somewhat the situation in Weinrib 
and Halperin, which they speculate may be associated with a smeared transition. 
Investigations currently under way are directed at a clearer understanding of this 
situation. 
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